Un peu de Chimie : l'équilibre chimique

Introduction

On considère un système chimique dans lequel se produit une réaction d'équation générale

$\alpha A + \beta B \rightleftharpoons \chi C + \delta D$

A partir d'un état dit initial où les réactifs sont mis en présence, le système évolue jusqu'à un état qualifié d'état final. On traduit cette évolution à l'aide de l'avancement x, qui varie donc de 0 à l'avancement final x_f . Dans cet état, les quantités de matière de chaque réactif et produit restent constants.

Il y a deux raisons possibles pour que l'on atteigne la fin d'évolution du système :

- ► Il se forme autant de réactifs qu'il n'en disparaît. En effet, les réactions chimiques peuvent a priori être réversibles, donc s'effectuer dans les deux sens (sens direct et sens inverse). On dit alors que l'on a atteint un **équilibre chimique et** $\mathbf{x_f} = \mathbf{x_{\acute{eq}}}$.
- Un réactif vient à manquer dans le système chimique. On dit qu'il est limitant car c'est par le manque de ce réactif que la réaction s'arrête. Il n'y a plus d'équilibre possible : le système a atteint un état "hors équilibre". La transformation chimique est totale et $\mathbf{x_f} = \mathbf{x_m}$, avancement maximal. (Cette situation est souvent rencontrée et bien étudiée en TS).

I Constante d'équilibre K

1) Expression générale

A chaque réaction est associée une constante d'équilibre, qui lie les "activités a" des espèces présentes à l'équilibre chimique. K ne dépend que de la température du milieu et est sans unité.

Vous en connaissez deux : le K_A, appelé "constante d'acidité" et le K_e appelé "produit ionique de l'eau.

Les "activités" des espèces chimiques en jeu dépendent de leur état physique. En voici deux :

 $a_X = 1$ si l'espèce (ou l'entité) chimique X est un solide ou un solvant

 $a_X = \frac{[X]}{C_0}$ lorsque X est en solution, avec [X], la concentration molaire de X et $C_0 = 1$ mol. L^{-1} , la concentration molaire de référence. Dans ce cas, l'activité et la concentration en mol/L ont la même valeur numérique, mais l'activité est une grandeur sans dimension, donc sans unité.

Pour la réaction d'équation générale écrite au début, $K = \frac{a_C^{\gamma} \cdot a_D^{\delta}}{a_A^{\alpha} \cdot a_B^{\beta}}$; les activités étant sans "dimension" donc sans unité, la constante d'équilibre l'est aussi. Cette relation est homogène.

2) Exemples

a) Constante d'acidité

 $\underline{D\acute{e}f}$: la constante d'acidité K_A d'un couple A/B est la constante d'équilibre de la réaction entre l'acide de ce couple et l'eau.

- 1. Ecrire l'équation de la réaction entre un acide dissous de formule HA et l'eau.
- 2. Identifier les états physiques des espèces en présence, les nombres stœchiométriques, et exprimer la constante de cette réaction en fonction des activités.
- 3. Remplacer C₀ par 1 mol.L⁻¹, l'activité de l'eau-solvant par 1 et retrouver ainsi l'expression simplifiée du K_A que vous la connaissez, qui semble non homogène....

b) Produit ionique de l'eau

Déf : le produit ionique de l'eau K_E est la constante d'équilibre de la réaction d'autoprotolyse de l'eau

- 1. Ecrire l'équation de la réaction d'autoprotolyse de l'eau
- 2. Identifier les états physiques des espèces en présence, les nombres stœchiométriques, et retrouver ainsi l'expression du K_E en fonction des activités.
- 3. Remplacer C₀ par 1 mol.L⁻¹, l'activité de l'eau-solvant par 1 et retrouver ainsi l'expression simplifiée du K_E que vous la connaissez, qui semble non homogène....

c) Produit de solubilité (non vu en TS)

<u>Déf</u>: le produit de solubilité, noté K_s, est la constante d'équilibre de la réaction de dissolution d'un solide.

- 1. Ecrire l'équation de la réaction de dissolution du nitrate de plomb Pb(NO₃)_{2 (s)} (formé par les ions Pb²⁺ et les ions nitrate NO₃⁻)
- 2. Identifier les états physiques des espèces en présence, les nombres stœchiométriques, et déterminer ainsi l'expression du K_S. Vérifier que cette relation est bien homogène.
- 3. Remplacer C₀ par 1 mol.L⁻¹, l'activité du solide par 1 et en déduire l'expression simplifiée du K_S, qui semble non homogène....

II Détermination de la composition de l'état du système à l'équilibre chimique

1) Présentation de la méthode générale

Il faut d'abord déterminer la valeur de x_{eq} telle que l'équation avec la valeur numérique de K soit vérifiée.

- 1. Dresser un tableau d'avancement, exprimer les quantités de matière de chaque espèce pour un état quelconque d'avancement *x*.
- 2. Etablir l'expression de K avec les activités, puis en fonction de x.
- 3. Résoudre l'équation pour obtenir la valeur de x_{eq} .

S'il n'y a pas de solution à cette équation, cela signifie que l'équilibre n'est pas possible et qu'un réactif limite la réaction !

2) Solution d'acide formique

On prépare une solution d'acide formique HCOOH en plaçant $n_0 = 0,0100$ mol d'acide formique solide dans $V \neq 100$ mL d'eau.

- 1. On suppose que tout l'acide formique solide se dissout dans l'eau et se trouve donc sous la forme $HCOOH_{(aq)}$. Donner l'équation de la réaction de l'acide formique avec l'eau.
- 2. A l'état initial on suppose avoir uniquement de l'eau et $HCOOH_{(aq)}$. Remplir un tableau d'avancement en figurant l'état initial et un état quelconque où l'avancement est x.
- 3. Donner l'expression simplifiée de K_A , constante d'acidité en fonction des concentrations des espèces à l'équilibre, puis en fonction de x_{eq} avancement à l'équilibre chimique.
- 4. Déterminer l'équation du second ordre que doit vérifier l'avancement x à l'équilibre. On gardera une formule littérale faisant intervenir, n, V et K_A
- 5. On donne $K_A = 1,8.10^{-4}$. Résoudre l'équation pour la seule solution acceptable (commenter).
- 6. En déduire les quantités de matière à l'équilibre chimique de chaque espèce, puis le pH de la solution.

3) pH de l'eau pure

- 1. Associer un tableau d'avancement à la réaction d'autoprotolyse de l'eau, en imaginant un état fictif initial où on n'aurait que de l'eau.
- 2. A partir de l'expression simplifiée du produit ionique, établir la relation entre le K_e et le pH de l'eau pure à l'équilibre chimique.
- 3. On donne $K_e = 1,0.10^{-14}$ à 25 °C. En déduire la valeur du pH de l'eau pure.
- 4. Le produit ionique de l'eau augmente avec la température. Comment varie alors le pH de l'eau pure ?

4) Dissolution du nitrate de plomb

On dissout une quantité n_0 de nitrate de plomb dans un volume V = 100 mL de solution. On suppose dans un premier temps qu'il reste du solide et donc que la solution est saturée.

- 1. Associer un tableau d'avancement à la réaction de dissolution.
- 2. Exprimer le produit de solubilité K_S en fonction de $x_{eq et} V$.
- 3. En déduire l'expression de x_{eq} en fonction de K_s et V.
- 4. A 20°C, $K_s = 15.5$, calculer la valeur de l'avancement à l'équilibre chimique.
- 5. Quelle est la valeur minimale de n₀ pour laquelle la solution obtenue est saturée ?
- 6. Qu'est-ce qui change si $n_0 > n_{0, min}$?
- 7. Le produit de solubilité croit avec la température. Comment varie alors la quantité de solide dissous ?